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A B S T R A C T

Millimeter-wave wireless communications in a high-level information society have been expanding in
terms of high-density data transfer and radar for pre-crash safety systems. a-wollastonite (CaSiO3) based
and SrSiO3 based solid solutions (s.s.) in the CaSiO3-SrSiO3 eutectic binary system are expected as
millimeter-wave dielectrics because of low dielectric constant as described in a previous paper. In this
paper, crystal structures of SrSiO3 and Ca0.2Sr0.8SiO3 compounds are analyzed by Rietveld method using
X-ray powder diffraction (XRPD) patterns obtained at the PF-KEK, Tsukuba, Japan. Covalencies of Si��O
bonds are calculated through the bond strength obtained by the bond length, which at x = 0.8 were higher
than that of at x = 1 as (Ca1-xSrx)SiO3. The lowest dielectric constant (er) and highest Qf value at x = 0.8 with
er = 6.62, Qf = 66,700 GHz and tf = –40 ppm/�C were explained by the covalencies.
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1. Introduction

Nikkei Electronics (NE) magazine [1] reported in 2013 that
millimeter-wave wireless communication has begun to spread to
public welfare systems in Japan. Millimeter-wave communications
have reached runways to takeoff after many twists and turns.
Wireless gigabite (WiGig) for high data rate communication has
the highest data speed of 7 G bits per second at a short
communication distance of approximately 10 m, as non com-
pressed millimeter-wave wireless communications [2,3]. Further-
more, millimeter-wave communication can be applied to radar for
pre-crash safety systems [4], which are the frequencies assigned by
Ministry of Internal Affairs and Communications (MIC) [5].

The dielectrics for millimeter-wave are desired to have high
quality factor (Q), low dielectric constant (er) and near-zero
temperature coefficients of the resonant frequency (tf) [6]. Most of
the useful candidate materials with low er and high Qf exist in the
silicates [7,8] such as forsterite (Mg2SiO4) [9–12], willemite
(Zn2SiO4) [13], and cordierite/indialite (Mg2Al4Si5O18) [14,15].
The low er and high Qf are attributed to the reduced rattling of
atoms in the silicate tetrahedra based on covalency [16]. In the case
of cordierite/indialite composed of 6-membered SiO4 hexagonal
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ring [17], the tf shows a value of +24 ppm/�C [18]. High
temperature form a-wollastonite CaSiO3 also is a ring silicate
[19,20], which is expected to have near zero tf. From this point of
view, the authors investigated the microwave dielectric properties
of a-CaSiO3. The wollastonite possesses two polymorphs [19]: (1) a
low-temperature form composed of a chain structure of SiO4

tetrahedra and (2) a high-temperature form (pseudo-wollastonite:
a-CaSiO3) with 3-membered ternary rings of SiO4 tetrahedra [20].
In addition the authors focused on SrSiO3, where Sr substitutes for
Ca, which is composed of 3-membeed ternary ring of SiO4

tetrahedra [21]. Both a-CaSiO3 and SrSiO3 belong to the same
monoclinic space group C2/c. However, the detailed structures are
different: the former [20] is composed of four layered structure,
and latter [21] a six-layered structure.

In a previous paper [22], the authors confirmed a-CaSiO3-
SrSiO3 binary phase diagram as shown in Fig. 1 [23], using X-ray
powder diffraction, which is constructed by three parts: two solid
solutions (s.s.) of CaSiO3 s.s. and SrSiO3 s.s. located x = 0 to 0.4 and
x = 0.6 to 1.0, respectively, and two phase region around x = 0.5. The
authors also presented the relative densities and microwave
dielectric properties of (Ca1-xSrx)SiO3 as a function of composition
x as shown in Fig. 2 [22]. The quality factor (Qf) shows maximum at
x = 0.8. In the CaSiO3 s.s. region, the dielectric constants (er)
increase with increasing x, depending on the density and the
polarizability of the substitutional x value [24]. On the other hand,
in the SrSiO3 s.s. region, the er values decrease through to a
minimum value. As the polarizability of Sr is larger than that of Ca,
icrowave dielectric properties of a-(Ca1-xSrx) SiO3 (x=1 and 0.8) ring
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Fig 1. Binary phase diagram of CaSiO3-SrSiO3.
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the er of the s.s. should be increased usually as increase of the
substitutional x value. Why does the er of the s.s. decrease as x? In
this paper, the reason of the abnormal behavior of er, and producing
Fig. 2. Relative density and microwave dielectric propert

Fig. 3. XRPD patterns of (Ca0.2Sr0.8)SiO3 (a) and SrSiO3 (b) refined by Rietveld method,
radiation.
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highest Qf value at x = 0.8 composition will be clarified based on the
crystal structure analyzed by Rietveld method.

2. Experimental

The synthesis of a-CaSiO3, SrSiO3, and (Ca1-xSrx)SiO3 silicate
ceramics, and measurement method of densities have been
reported in a previous paper [22]. The crystal structure analyses
were performed by Rietveld method [25] using the synchrotron
radiation powder diffraction data obtained by a multiple 2u
detector system (MDS) [26] at beam line BL-4B2 in the Photon
Factory of the High Energy Accelerator Research Organization
(PF-KEK), Tsukuba, Japan. The X-ray powder diffraction patterns
were obtained in the 2u range 11–127� using 1.21 Å wave length
monochromatized by double-crystal Si(111). The initial data of
atomic parameters, space group and lattice parameters were
derived from those of SrSiO3 analyzed by Nishi [21].

Bond valence sum (Vi) presented by Brown [27–29] is calculated
using following equation:

vij ¼ exp
Rij � dij

b

� �
ð1Þ
ies: er, Qf and tf as a function of x for (Ca1-xSrx)SiO3.

 which are obtained in the 2u 11 to 127� using 1.21 Å wave length by synchrotron

icrowave dielectric properties of a-(Ca1-xSrx) SiO3 (x=1 and 0.8) ring
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Table 1
Atomic coordinates and equivalent isotropic temperature factors (origin at –1 on glide plane c) of (Ca0.2Sr0.8)SiO3 (a) and SrSiO3 (b) with lattice parameters which are same
space group of C2/c (No. 15).

(a)

Ca0.2Sr0.8SiO3

S.G. C2/c (No.15) monoclinic

a = 12.250(2) Å b = 7.097(1) Å c = 10.830(1) Å b = 111.50(1)� V = 876.0(2)Å3

atom site g x y z B(Å2)

Sr(1) 8f 0.817(2) 0.0865(1) 0.2406(1) 0.4988(1) 0.85(2)
Ca(1) 8f 0.183(2) 0.0865(1) 0.2406(1) 0.4988(1) 0.85(2)
Sr(2) 4c 0.822(2) 1/4 1/4 0 0.87(3)
Ca(2) 4c 0.178(2) 1/4 1/4 0 0.87(3)
Si(1) 8f 1 0.1244(2) 0.4545(3) 0.2421(2) 1.34(4)
Si(2) 4e 1 0 0.8381(4) 1/4 1.23(7)
O(1) 8f 1 0.1363(3) 0.4103(5) 0.1141(4) 0.72(9)
O(2) 8f 1 0.2240(3) 0.4020(6) 0.3801(4) 1.40(10)
O(3) 8f 1 0.1075(3) 0.6920(5) 0.2495(3) 1.40(12)
O(4) 8f 1 0.0529(3) 0.9425(6) 0.3894(3) 0.61(10)
O(5) 4e 1 0 0.3574(8) 1/4 1.47(13)
Rwp = 11.17% RI = 5.09% RF = 2.73% S = 1.4975%

(b)

SrSiO3

S.G. C2/c (No.15) monoclinic

a = 12.328(2)Å b = 7.143(1)Å c = 10.882(2)Å b = 111.58(1)� V = 891.1(2)Å3

atom site x y z B(Å2)

Sr(1) 8f 0.0865(1) 0.2409(1) 0.4991(1) 0.79(2)
Sr(2) 4c 1/4 1/4 0 0.97(4)
Si(1) 8f 0.1226(2) 0.4555(4) 0.2416(2) 1.36(5)
Si(2) 4e 0 0.8394(5) 1/4 1.68(9)
O(1) 8f 0.1358(4) 0.4065(6) 0.1156(4) 0.53(10)
O(2) 8f 0.2219(4) 0.3967(7) 0.3791(4) 1.41(12)
O(3) 8f 0.1092(3) 0.6929(6) 0.2487(4) 1.43(14)
O(4) 8f 0.0530(4) 0.9384(7) 0.3901(4) 0.97(12)
O(5) 4e 0 0.3585(9) 1/4 1.45(14)
Rwp = 11.03% RI = 2.72% RF = 2.08% S = 1.7939%
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vi ¼ Sj vij ð2Þ

Here, i: No. of cation, j: No. of anion, vij: bond valence between i and
j, Rij: bond valence parameter Ca��O = 1.967, Sr��O = 2.118 and Si ��
O = 1.624 [30], dij: atomic distance between no. i cation and no. j
anion, b: Enpirical parameters (0.37).

The covalency fc of the cation-oxygen bond was estimated from
the following equation [31]:

fc = asM (3)

Where, a and M are empirical constants, which depend on the
number of inner-shell electrons of ions reported by Brown et al.
[32]. Here, a = 0.54 v.u. and M = 1.64 for the inner-shell electrons
number 10. The bond strength s is obtained from the following
equation:

s = (dij/Rl)-N (4)

Here, dij is defined as bond length. Rl and N are the empirical
parameters that depend on the cation site and the each cation-
anion pair, respectively.

Microwave dielectric properties were measured by Hakki and
Coleman’s method [33,34] in the TE011 mode using a network
analyzer (Agilent 8720ES). tf was measured in the temperature
range between 20 and 80 �C.
Fig. 4. Crystal structure of SrSiO3. (a) (001) plane with 3-membered rings, (b)
projected from b unique axis.
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Table 2
Volume of MO8 dodecahedra and SiO4 tetrahedra, and the differences of D in
(Ca0.2Sr0.8)SiO3 and SrSiO3.

Polyhedra Volume (Å)

(Ca0.2Sr0.8)SiO3 SrSiO3 D

M(1)O8 dodecahedron 30.75 31.22 �0.47
M(2)O8 dodecahedron 29.82 30.43 �0.61
Si(1)O4 tetrahedron 2.15 2.17 �0.02
Si(2)O4 tetrahedron 2.19 2.24 �0.05

Table 3
Bond lengths, the averages (Å) and the differences D of M��O bonds in MO8

dodecahedra and Si��O bonds in SiO4 tetrahedra on (Ca0.2Sr0.8)SiO3 and SrSiO3.

A O Bond length of A-O (Å)
(Ca0.2Sr0.8)SiO3 SrSiO3 D

M(1) – O(1) 2.82 2.82 0
2.74 2.78 �0.04

– O(2) 2.43 2.45 �0.02
2.72 2.71 0.01

– O(3) 2.68 2.67 0.01
– O(4) 2.39 2.43 �0.04

2.75 2.75 0
– O(5) 2.64 2.66 �0.02

Average 2.65 2.66 �0.01
M(2) – O(1) 2.45 2.47 �0.02

2.45 2.47 �0.02
– O(2) 2.75 2.81 �0.05

2.75 2.81 �0.05
– O(3) 2.67 2.68 �0.01

2.67 2.68 �0.01
– O(4) 2.65 2.65 0

2.65 2.65 0
Average 2.63 2.65 �0.02
Si(1) – O(1) 1.48 1.48 0

– O(2) 1.59 1.60 �0.01
– O(3) 1.70 1.71 0
– O(5) 1.70 1.70 0.01

Average 1.62 1.62 0
Si(2) – O(3) 1.68 1.71 �0.03

– O(3) 1.68 1.71 �0.03
– O(4) 1.59 1.59 0
– O(4) 1.59 1.59 0

Average 1.63 1.65 �0.01

Bond Bond length of A-O (Å)

(Ca0.2Sr0.8)SiO3 SrSiO3 D

M(1) – O(1) 2.82 2.82 0
2.74 2.78 �0.04

– O(2) 2.43 2.45 �0.02
2.72 2.71 0.01

– O(3) 2.68 2.67 0.01
– O(4) 2.39 2.43 �0.04

2.75 2.75 0
– O(5) 2.64 2.66 �0.02

Average 2.65 2.66 �0.01
M(2) – O(1) 2.45 2.47 �0.02

2.45 2.47 �0.02
– O(2) 2.75 2.81 �0.05

2.75 2.81 �0.05
– O(3) 2.67 2.68 �0.01

2.67 2.68 �0.01
– O(4) 2.65 2.65 0

2.65 2.65 0
Average 2.63 2.65 �0.02
Si(1) – O(1) 1.48 1.48 0

– O(2) 1.59 1.60 �0.01
– O(3) 1.70 1.71 0
– O(5) 1.70 1.70 0.01

Average 1.62 1.62 0
Si(2) – O(3) 1.68 1.71 �0.03

– O(3) 1.68 1.71 �0.03
– O(4) 1.59 1.59 0
– O(4) 1.59 1.59 0

Average 1.63 1.65 �0.01
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3. Results and discussion

Fig. 3(a) and (b) shows Rietveld refinement [25] of (Ca0.2Sr0.8)
SiO3 and SrSiO3, respectively. In the both cases, the observed
intensity Io and calculated intensity Ic, showed by the dotted line
and the solid line, respectively, are good fitted, and also the 2u
positions are good fitted, as shown on the difference line between I
o and Ic. Table 1(a) and (b) show atomic coordinates of (Ca1-xSrx)
SiO3with x = 0.8 and 1.0, respectively, analyzed by Rietveld method
[25]. The reliability factors RF corresponding to R factor of single
crystal analysis, are 2.75 and 2.08%, respectively with good fitness.
In the case of x = 0.8, site occupancies of Ca and Sr ions are
determined on the 8f and 4c Wyckoff positions, respectively, on the
space group C2/c (No.15) with unique axis b, cell choice 1 [35]. The
compositions shift a little by 0.02 for x to SrSiO3 from nominal
composition. Fig. 4 shows crystal structure of SrSiO3 with 3-
membered SiO4 tetrahedra rings: (a) perpendicular to the ring, (b)
the side view of the ring.

Table 2 shows polyhedra volumes of x = 1.0 and 0.8 such as MO8

(M = Ca, Sr) dodecahedra and SiO4 tetrahedra calculated using the
atomic coordinates obtained. The volume of MO8 dodecahedra is
reduced by the substitution for Sr by Ca with small ionic radius.
And that of SiO4 tetrahedra also reduced, in spite of no substitution.
Table 3 shows the bond lengths of cation-oxygen on the x = 0.8 and
1.0 based on the atomic coordinates obtained. In the case of x = 0.8,
in spite of small volume on all sites, some bond lengths between
center cations and oxygen anions are larger than those of x = 1.0.
The authors have considered the difference of the bond lengths
which is dependent on the bond strength. Therefore, bond valence
sum of center atoms on the polyhedra has been calculated as
shown in Table 4. The values of MO8 dodecahedra are almost
correspond to the ideal one of 2.0 on the both compositions. But
ble 4
nd valence sum of M��O bonds in MO8 dodecahedra and Si ��O bonds in SiO4

trahedra on (Ca0.2Sr0.8)SiO3 and SrSiO3.

Bond Bond valance sum

(Ca0.2Sr0.8)SiO3 SrSiO3

M(1) – O(1) 0.141 0.150
0.175 0.165

– O(2) 0.404 0.409
0.185 0.203

– O(3) 0.208 0.226
– O(4) 0.455 0.434

0.168 0.180
– O(5) 0.228 0.232

Sum 1.965 2.000
M(2) – O(1) 0.379 0.383

0.379 0.383
– O(2) 0.168 0.155

0.168 0.155
– O(3) 0.214 0.221

0.214 0.221
– O(4) 0.225 0.240

0.225 0.240

Sum 1.974 1.997
Si(1) – O(1) 1.476 1.471

– O(2) 1.101 1.060
– O(3) 0.806 0.797
– O(5) 0.808 0.824

Sum 4.191 4.152
Si(2) – O(3) 0.866 0.794

– O(3) 0.866 0.794
– O(4) 1.095 1.106

O(4) 1.095 1.106

Sum 3.923 3.800

icrowave dielectric properties of a-(Ca1-xSrx) SiO3 (x=1 and 0.8) ring
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Fig. 5. Bond valence sum of Si-O and M-O in SiO4 tetrahedra (a) and MO8

dodecahedra (b), respectively, on the x = 0.8 and 1.0 for (Ca1-xSrx)SiO3.

Table 5
Covalency (%) of M��O bonds in MO8 dodecahedra and Si��O bonds in SiO4

tetrahedra on (Ca0.2Sr0.8)SiO3 and SrSiO3.

Bond Covalency (%)

(Ca0.2Sr0.8)SiO3 SrSiO3

M(1) – O(1) 16.09 16.37
17.95 17.23

– O(2) 28.53 28.80
18.53 19.27

– O(3) 19.70 20.45
– O(4) 30.59 29.85

17.60 18.04
– O(5) 20.69 20.75

Average 21.21 21.34
M(2) – O(1) 27.49 27.67

27.49 27.67
– O(2) 17.62 16.66

17.62 16.66
– O(3) 19.98 20.17

19.98 20.17
– O(4) 20.52 21.11

20.52 21.11
Average 21.40 21.40
Si(1) – O(1) 69.45 69.27

– O(2) 57.19 55.81
– O(3) 47.18 46.88
– O(5) 47.24 47.81

Average 55.26 54.95
Si(2) – O(3) 49.27 46.75

– O(3) 49.27 46.75
– O(4) 56.99 57.36
– O(4) 56.99 57.36

Average 53.13 52.06

Fig. 6. Covalency (%) of M-O and Si-O in SiO4 tetrahedra (a) and MO8 dodecahedra
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those of SiO4 are different from ideal one of 4.0, and the differences
are reduced on the x = 0.8 as shown visually in Fig. 5. Table 5 shows
percentage of the covalency on MO8 and SiO4 polyhedra. Those
values on MO8 dodecahedra are almost same value around 21.3%,
but on SiO4 tetrahedra, those values on x = 0.8 are larger than those
on x = 1.0, which are 55.26 and 53.13% on Si(1)O4 and Si(2)O4,
respectively. And the difference between Si(1)O4 and Si(2)O4 on
x = 0.8 is smaller than one on x = 1.0.

The microwave dielectric properties of the (Ca1-xSrx)SiO3 solid
solutions reported in previous paper [22] are shown in Fig. 2 as
described on the Introduction section. The reason showing the
highest quality factor (Qf) at x = 0.8 on the SrSiO3 solid solutions
could be explained by the covalency of SiO4 tetrahedra. As the
covalencies of SiO4 tetraheda at x = 0.8 is larger than that at x = 1.0
as described in the above paragraph, the crystal structure becomes
stable and show the highest Qf. An example of improvement of Qf
based on the covalencies was reported on about new-type
corundum [36,37] by Ogawa group in Meijo-University.

The abnormal behavior of er as shown in Fig. 2(b), that is on the
(Ca1-xSrx)SiO3, in spite of substitution Sr ions with high polariz-
ability of 4.24 for Ca with that of 3.14 [24], the er values are
decreasing, also could be explained by the covalencies obtained.
Fig. 6 present the % of covalency of Si(1)-O and Si(2)-O comparing
x = 0.8 and 1.0. In the case of x = 0.8 composition, the % of covalency
is larger than that of x = 1.0. As the rattling of Si ions in SiO4

tetrahedra on x = 0.8 is reduced by high covalency, the er value is
decreased as a function of composition x and shows minimum
value at x = 0.8.

4. Conclusions

There are two points to be clarified on the microwave dielectric
properties of a-CaSiO3 based and SrSiO3 based solid solutions
obtained on the previous paper [22]. One is the highest Qf obtained
Please cite this article in press as: H. Ohsato, et al., Crystal structure and m
silicates for millimeter-wave applications, Mater. Res. Bull. (2016), http
at x = 0.8 in (Ca1-xSrx)SiO3 solid solutions. Another is abnormal
dielectric constant behavior on the (Ca1-xSrx)SiO3 solid solutions,
that is in spite of substitution Sr with high polarizability for Ca with
low one the dielectric constants are decreasing. These points were
clarified by the crystal structure analysis of Ca0.2Sr0.8SiO3 (x = 0.8)
and SrSiO3 (x = 1.0). The covalencies of SiO4 tetrahedra on the x = 0.8
(b), respectively, on the x = 0.8 and 1.0 for (Ca1-xSrx)SiO3.

icrowave dielectric properties of a-(Ca1-xSrx) SiO3 (x=1 and 0.8) ring
://dx.doi.org/10.1016/j.materresbull.2016.12.020
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were higher than those on the x = 1.0, which was obtained from
crystal structure analyzed by Rietveld method. The high cova-
lencies brings high Qf at x = 0.8, decreasing dielectric constants
with increasing x in the SrSiO3 solid solutions in spite of increasing
of polarizability due to substitution Sr for Ca.
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